A 3-Dimensional Lattice Reduction Algorithm
نویسنده
چکیده
The aim of this paper is a reduction algorithm for a basis b1, b2, b3 of a 3-dimensional lattice in R n for fixed n ≥ 3. We give a definition of the reduced basis which is equivalent to that of the Minkowski reduced basis of a 3-dimensional lattice. We prove that for b1, b2, b3 ∈ Z, n ≥ 3 and |b1|, |b2|, |b3| ≤ M , our algorithm takes O(log M) binary operations, without using fast integer arithmetic, to reduce this basis and so to find the shortest vector in the lattice. The definition and the algorithm can be extended to any dimension. Elementary steps of our algorithm are rather different from those of the LLL-algorithm, which works in O(log M) binary operations without using fast integer arithmetic.
منابع مشابه
An Irregular Lattice Pore Network Model Construction Algorithm
Pore network modeling uses a network of pores connected by throats to model the void space of a porous medium and tries to predict its various characteristics during multiphase flow of various fluids. In most cases, a non-realistic regular lattice of pores is used to model the characteristics of a porous medium. Although some methodologies for extracting geologically realistic irregular net...
متن کاملTREE AUTOMATA BASED ON COMPLETE RESIDUATED LATTICE-VALUED LOGIC: REDUCTION ALGORITHM AND DECISION PROBLEMS
In this paper, at first we define the concepts of response function and accessible states of a complete residuated lattice-valued (for simplicity we write $mathcal{L}$-valued) tree automaton with a threshold $c.$ Then, related to these concepts, we prove some lemmas and theorems that are applied in considering some decision problems such as finiteness-value and emptiness-value of recognizable t...
متن کاملImplementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems
In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...
متن کاملLattice Reduction by Random Sampling and Birthday Methods
We present a novel practical algorithm that given a lattice basis b1, ..., bn finds in O(n ( k 6 )) average time a shorter vector than b1 provided that b1 is ( k 6 ) times longer than the length of the shortest, nonzero lattice vector. We assume that the given basis b1, ..., bn has an orthogonal basis that is typical for worst case lattice bases. The new reduction method samples short lattice v...
متن کاملSIMULTANEOUS RATIONAL APPROXIMATIONS OF p-ADIC NUMBERS BY THE LLL LATTICE BASIS REDUCTION ALGORITHM
In this paper we construct multi-dimensional p-adic approximation lattices by simultaneous rational approximations of p-adic numbers. For analyzing these p-adic lattices we apply the LLL algorithm due to Lenstra, Lenstra and Lovász, which has been widely used to solve the various NP problems such as SVP (Shortest Vector Problems), ILP (Integer Linear Programing) .. and so on. In a twodimensiona...
متن کامل